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Rational approximation to algebraic numbers of
small height: the Diophantine equation

jaxn ÿ bynj � 1

By Michael A. Bennett at Princeton

Abstract. Following an approach originally due to Mahler and sharpened by Chud-
novsky, we develop an explicit version of the multi-dimensional ``hypergeometric method''
for rational and algebraic approximation to algebraic numbers. Consequently, if a; b and
n are given positive integers with nZ 3, we show that the equation of the title possesses
at most one solution in positive integers x; y. Further results on Diophantine equations
are also presented. The proofs are based upon explicit PadeÂ approximations to systems of
binomial functions, together with new Chebyshev-like estimates for primes in arithmetic
progressions and a variety of computational techniques.

1. Introduction

A classical problem in Diophantine approximation is to determine, for a given irra-
tional number y and real e > 0, positive constants c � c�y; e� and l � l�y� such that the
inequality

yÿ p

q

���� ���� > cqÿlÿe�1:1�

is satis®ed by all integers p and q with q > 0. If y is an algebraic number of degree n, then
a result of Liouville implies that we may take l � n in (1.1), a fact which established the
existence of transcendental numbers. In 1909, Thue [Th1] showed that the exponent in
Liouville's theorem could be replaced by l � n=2� 1. Consequently, if F�x; y� is an irre-
ducible binary form (i.e. homogeneous polynomial in Z�x; y�) of degree nZ 3, the Thue
equation

F�x; y� � m
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has, for a ®xed non-zero integer m, at most ®nitely many solutions in integers x and y.
Subsequently, Thue's theorem has been sharpened by Siegel [Si1]

l � min
n

s� 1
� s: 0Y sY nÿ 1

� �� �
;

Dyson [Dy] and Gelfond [G] �l � �����
2n
p � and, ®nally, Roth [Ro] �l � 2�, extended to p-adic

valuations by Mahler [Ma2] and Ridout [Rid], and generalized to simultaneous approxi-
mation by Schmidt [Schm]. Other than Liouville's original theorem, however, each of these
results is ine¨ective in the sense that it is not possible to explicitly compute the constant
c�y; e� from the given proof.

In the intervening years, three distinct methods have arisen to derive e¨ective im-
provements upon Liouville's theorem, based upon PadeÂ approximation to hypergeometric
functions (see e.g. [Ba1], [Ba2], [Ba3], [Be2], [Be3], [Ch], [Ea], [Ma1]), the method of Thue-
Siegel (see e.g. [Bo1], [Bo2], [BM]) or lower bounds for linear forms in logarithms of
algebraic numbers (see e.g. [Ba4], [F]). These correspond to producing certain ``auxilliary
polynomials'' (depending on the algebraic number y) in 1; 2 or many variables, respectively.
While the last two of these methods are strong enough to imply improvements upon Liou-
ville's exponent l � n in (1.1) for all algebraic numbers y of degree at least 3, the ®rst
is characterized by sharper bounds with smaller implied constants, though necessarily in a
restricted setting.

In this paper, we will develop a general version of the ``hypergeometric method''. Our
approach will follow closely that of Mahler [Ma1], together with a number of re®nements
stemming from work of Baker [Ba3] and Chudnovsky [Ch]. In most situations, our results,
in contrast to [Ch], will be completely explicit, with an eye towards applications to Diop-
hantine equations. In fact, we will postpone a discussion of the general applicability of our
methods and of allied results for nonarchimedean valuations to a future paper [Be4], con-
centrating instead upon bounds for algebraic numbers of relatively small degree.

As mentioned previously, improvements upon Liouville's theorem have profound
implications for Diophantine equations. In particular, lower bounds for rational approxi-
mation to numbers of the form

��������
a=bn

p
are equivalent to bounds upon integer solutions

�x; y� to diagonal Thue equations of the shape

axn ÿ byn � c:�1:2�

If n � 3 and c �G1, then Delone [De] and Nagell [N] (see also [DF]), independently,
applied what is now termed Skolem's p-adic method together with information on funda-
mental units in cubic number ®elds to show, for a and b nonzero integers, that (1.2) pos-
sesses at most one solution in positive integers �x; y�. Similarly, Ljunggren [Lj2] (see also
[Ta]) deduced a like result in the case n � 4 and c �G1. For larger values of n, by sharp-
ening PadeÂ approximation-based techniques of Thue [Th2] and Siegel [Si2], Domar [Do]
was able to show, with a few exceptions, that (1.2) with c �G1 in fact possesses at most
two positive solutions. One should note that while the results of [De], [N] and [Lj2] provide
an explicit description of a purported solution �x; y� to (1.2) if n � 3 or 4 and c �G1, the
same is not true of [Do]. For further results on equation (1.2), the reader is directed to [Ev],
[Hy], [Mi], [Mo] and [Mu].
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Recently, B. M. M. de Weger and the author [BdW] (see also [Mi]) strengthened
Domar's theorem by showing that, if ab3 0; nZ 3 and c �G1, then (1.2) has at most one
solution in positive integers �x; y�, except possibly for those �a; b; n� (where, without loss of
generality, we assume that b > aZ 1) with

b � a� 1; 2Y aY minf0:3n; 83g and 17Y nY 347:�1:3�

As an application of the main results of the paper at hand, we are able to sharpen these
conclusions, proving

Theorem 1.1. If a; b and n are integers with ab3 0 and nZ 3, then the equation

jaxn ÿ bynj � 1�1:4�

has at most one solution in positive integers �x; y�.

This implies that the equation

�a� 1�xn ÿ ayn � 1

has, for aZ 1 and nZ 3, precisely the solution �x; y� � �1; 1� in positive integers (if a � 1,
this is a consequence of a result of Darmon and Merel [DM]). As far as we know, this is the
®rst instance of a complete solution of a parametrized family of Thue equations of arbi-
trary degree. We note that the methods of [BdW], which include lower bounds for linear
forms in logarithms of algebraic numbers together with results from [Be3] and various
computational techniques, di¨er from those of the current paper in that they appeal to what
is essentially the ``one-dimensional'' version of the results derived here.

Another classical Diophantine problem, arising in a variety of contexts, is to solve the
equation

xn ÿ 1

xÿ 1
� ym�1:5�

where x; y; n and m are integers with x > 1; y > 1; n > 2 and m > 1. An as yet unproven
conjecture regarding this equation is that the only such solutions �x; y; n;m� are those given
by �3; 11; 5; 2�, �7; 20; 4; 2� and �18; 7; 3; 3�. Indeed, it is not even known if (1.5) has ®nitely
many solutions of this form. For a detailed history of early algebraic approaches to (1.5),
the reader is directed to the book of Ribenboim [Rib]. More recent studies of this equation
have utilized the hypergeometric method (e.g. [SS]) or lower bounds for linear forms in
logarithms (e.g. [ST] or [Bu]; the ®rst of these uses archimedean estimates, the second
p-adic). By application of Theorem 1.1, we may show

Corollary 1.2. If x > 1, y > 1, n > 2 and m > 1 are integers, then:

(a) If n1 1 �mod m�, it follows that the only solution to equation (1.5) satis®es

�x; y; n;m� � �3; 11; 5; 2�.

(b) There are no solutions to (1.5) with x � zm for z A Z.
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(c) There are no solutions to (1.5) with x � z2 for z A Z.

(d) If o�n� denotes the number of distinct prime factors of n, then there are no solutions

to (1.5) with o�n� > mÿ 2.

The ®rst of these results was stated as a corollary in Le [Le2], but the proof is erro-
neous since Lemma 3 of [Le2] is false (this also invalidates the claims of Yu and Le in
[LY]; see the comment in [Yu]). Similarly, the results of Le [Le3] on equation (1.5) must
be regarded as unproven since Lemma 1 and Lemma 2 of that paper are both incorrect;
indeed the fact that the equation X 2 ÿ 3Y 2 � 112 possesses integral solutions while
X 2 ÿ 3Y 2 � 11 is insoluble serves to contradict Lemma 1 while, in the notation of [Le3],
taking �a; b; n; k;X ;Y� � �1; 2; 3; 47; 63; 50� contradicts Lemma 2. Our proof uses Theorem
1.1 in conjunction with work of Ljunggren [Lj1]. Part (b) is Theorem 1 of [Le1], but follows
very easily from Theorem 1.1. Part (c) is a slight sharpening of work of Saradha and Shorey
[SS], who deduced a like result under the hypothesis that

zZ 32 or z A f2; 3; 4; 8; 9; 16; 27g:

Finally, part (d) obtains from arguments of Shorey [Sh1] and [Sh2], upon application of
parts (a) and (b).

The outline of this paper is the following. In the next section, we begin by proving a
pair of technical lemmata which imply e¨ective bounds for rational and algebraic approx-
imation to real y, under certain speci®c conditions. To obtain these bounds, it is necessary
to construct families of ``approximating'' polynomials. In Section 3, we carry out this con-
struction by appealing to the theory of PadeÂ approximation to binomial functions. We also
derive a number of explicit, essentially sharp bounds for these polynomials. In Section 4,
we study the p-adic valuations of products of the gamma function evaluated at rational
points. This enables us to explicitly describe a factor Dm;n; r that arises in considering the
coe½cients of our ``approximating'' polynomials at nonarchimedean places. In Section 5,
we derive upper and lower bounds for sums of logarithms of primes in arithmetic progres-
sion, in ®xed intervals. This combines information about zeros of certain Dirichlet L-func-
tions with results obtained by sieving. These bounds are applied in Section 6, together with
a variety of computations, to majorize the term Dm;n; r considered in Section 4. In Section 7,
we state and prove our Main Theorem on rational approximation to algebraic numbers.
Section 8 contains data regarding computation of continued fraction expansions to num-
bers of the form

����������������
1� 1=an

p
, completing the proof of Theorem 1.1. In Section 9, we turn our

attention to approximation of algebraic numbers by algebraic numbers of ®xed degree.
Section 10 contains explicit formulae for certain ``characteristic numbers'' introduced by
Chudnovsky [Ch] and related to Dm;n; r of Section 4, at least for small values of the
parameter m. Finally, in Section 11, we prove Corollary 1.2.

2. Folklore lemmata

To derive lower bounds for rational approximation to a given real number y or to a
linear form in powers of y, it su½ces to produce sequences of good simultaneous rational
approximations to 1; y; y2; . . . ; ym for a positive integer m, which satisfy certain inde-
pendence conditions. To be precise, we can use the following ``folklore lemma''. The ®rst
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part is an explicit version of Lemma 3.2 of [Ch] (see also Lemma 1 of [NS]) while the
second is essentially a combination of Lemma 6 of [Ba3] and the proof of the main theorem
of that paper.

Lemma 2.1. Let y; c; d;C and D be positive real numbers and r0 and k positive
integers, with y irrational and C;D > 1. Further, suppose, for each positive integer r with

rZ r0, we can ®nd a sequence of polynomials

Pi; r�x� �
Pk
j�0

aijx
j

for 0Y iY k, with aij A Z, the matrix �aij� nonsingular,

jaijjY cC r

and

jPi; r�y�jY dDÿr:

1. If t is any real number satisfying t > 1 and tdDr0ÿ1 Z 1, p and q are nonzero integers

with qZD
r0ÿ1

k �td�ÿ1
k and d � maxfjyj; jp=qj; 1g, then

yÿ p

q

���� ���� > t

tÿ 1

k�k � 1�
2

dkÿ1cC�td�log�C�
log�D�

� �ÿ1

qÿl1

where

l1 � k 1� log�C�
log�D�

� �
:

2. If r0 � 1, C kÿ1 < D and x0; x1; . . . ; xk are integers, not all zero, with absolute value
at most X, then

Pk
i�0

xiy
i

���� ���� > ÿ2kk=2ckC k�2k
1
2k�1ckÿ1d�l�ÿ1

Xÿl2

where

l2 � k log C

log�D=C kÿ1� :

Proof. We will ®rst prove part 1. Choose r to be the smallest positive integer such
that Dr > tdqk. To see that rZ r0, note that qZD

r0ÿ1

k �td�ÿ1
k and so tdqk ZDr0ÿ1. We

therefore have Dr Y tdDqk and so

C r � D
r
ÿ

log�C�
log�D�
�
YC�td�log�C�

log�D� q
k
ÿ

log�C�
log�D�
�
:�2:1�
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Since �aij� is nonsingular, we can ®nd some i, 0Y iY k, for which Pi; r�p=q�3 0. Thus

1

qk
Y jPi; r�p=q�jY jPi; r�p=q� ÿ Pi; r�y�j � jPi; r�y�j < jPi; r�p=q� ÿ Pi; r�y�j � 1

tqk

whereby

jPi; r�p=q� ÿ Pi; r�y�j > 1ÿ 1

t

� �
qÿk:

On the other hand, we have

jPi; r�p=q� ÿ Pi; r�y�j �
�y

p=q

P 0i; r�x� dx

�����
�����Y k�k � 1�

2
dkÿ1 cC r yÿ p

q

���� ����:
It follows, therefore, that

yÿ p

q

���� ���� > t

tÿ 1

k�k � 1�
2

dkÿ1 cC r

� �ÿ1

qÿk

and so the desired result obtains from (2.1).

Let us next turn our attention to part 2. From Lemma 6 of [Ba3], under the hypoth-
eses of our lemma, we have

Pk
i�0

xiy
i

���� ���� > ÿkk=2�cC r�k�ÿ1 ÿ kdDÿrX�cC r�ÿ1:

Let us choose r to be the smallest positive integer such that

C�kÿ1�rDÿr < �2k
1
2k�1ckÿ1 dX �ÿ1

as is possible from the fact that C kÿ1 < D. It follows that

Pk
i�0

xiy
i

���� ���� > ÿ2kk=2�cC r�k�ÿ1

and, from our choice of r, we have

�C kÿ1=D�r Z �C kÿ1=D��2k
1
2k�1ckÿ1 dX�ÿ1:

We thus have

C kr YC k�2k
1
2k�1ckÿ1 dX�l2

and the result follows as claimed. r
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As noted by Baker [Ba3], a result of the nature of part 2 of Lemma 2.1 leads almost
immediately to a bound for approximation to y by algebraic numbers of ®xed degree. In
Section 9, we will derive such a bound. In order to apply the previous lemmata, for various
algebraic y, we need to construct sequences of polynomials Pi; r�x� with the requisite prop-
erties. To accomplish this, we turn to the theory of PadeÂ approximation.

3. PadeÂ approximants to binomial functions

Let us suppose that f1�z�; f2�z�; . . . ; fm�z� are de®ned by formal power series at z � 0.
If n1; . . . ; nm are nonnegative integers and

A1�zjn1; . . . ; nm�; . . . ;Am�zjn1; . . . ; nm�

polynomials in z of degree at most n1; . . . ; nm, respectively, then we will call the
Ai�zjn1; . . . ; nm� simultaneous PadeÂ approximants for the system fi�z� if

Pm
i�1

Ai�zjn1; . . . ; nm� fi�z� � R�zjn1; . . . ; nm�

possesses a zero of order Pm
i�1

�ni � 1� ÿ 1

at z � 0 (see Mahler [Ma3]). In this section, we will explicitly construct simultaneous PadeÂ
approximants to systems of binomial functions, following Mahler [Ma1] (see also Baker
[Ba3] and Chudnovsky [Ch]). These approximants will yield the polynomials needed for
application of Lemma 2.1. It should be noted that, in essence, this construction dates back
to work of Hermite [He].

Let us suppose that mZ 2 is an integer and set

f�z� � Qm
k�1

Qrkÿ1

h�0

�zÿ ok ÿ h�

and

R z

����o1 � � � om

r1 � � � rm

� �
� �ÿ1�sÿ1G�r1� � � �G�rm�

2p
�������ÿ1
p �

g

�1ÿ z�z dz

f�z�

where g is a closed, positively oriented contour enclosing all the poles of the integrand,
r1; . . . ; rm are positive integers, o1; . . . ;om are complex numbers such that oi ÿ oj are non-
integral for all i3 j and s � r1 � � � � � rm.

Cauchy's residue theorem implies, then, that

R z

����o1 � � � om

r1 � � � rm

� �
�Pm

j�1

Aj z

����o1 � � � om

r1 � � � rm

� �
�1ÿ z�oj
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where

Aj z

����o1 � � � om

r1 � � � rm

� �
� �ÿ1�sÿ1G�r1� � � �G�rm�

Prjÿ1

h�0

�1ÿ z�h
f 0�oj � h� :

We may readily observe that R z

����o1 � � � om

r1 � � � rm

� �
has a zero at z � 0 of order sÿ 1

(see e.g. [Ma1]). Further, from the preceding equation, the Aj z

����o1 � � � om

r1 � � � rm

� �
(for

1Y j Ym) are polynomials in z of degree rj ÿ 1 and thus it follows that we have
constructed a system of simultaneous PadeÂ approximants to the system of functions
�1ÿ z�oj �1Y j Ym�.

Let us now de®ne, for 1Y i; j Ym,

Ri z

����o1 � � � om

r1 � � � rm

� �
� R z

���� o1 � � � om

r1 � di1 � � � rm � dim

� �
and

Aij z

����o1 � � � om

r1 � � � rm

� �
� Aj z

���� o1 � � � om

r1 � di1 � � � rm � dim

� �
where dij is the Kronecker delta function.

We show that the system of polynomials Aij z

����o1 � � � om

r1 � � � rm

� �
�1Y i; j Ym� is, in a

certain sense, independent, a fact that will be useful in establishing that the corresponding
matrix �aij� in Lemma 2.1 is nonsingular. To be precise, from Mahler [Ma1], we have

det
1Yi; jYm

 
Aij z

����o1 � � � om

r1 � � � rm

� �!
�G

Qm
h;k�1
h3k

G�oh ÿ ok�G�rk�
G�rk � oh ÿ ok� zs

and so, if z3 0, we may conclude that

det
1Yi; jYm

 
Aij z

����o1 � � � om

r1 � � � rm

� �!
3 0:�3:1�

Next, let us examine the coe½cients of the polynomials Aij z

����o1 � � � om

r1 � � � rm

� �
more

closely. If we write

F z

����or
� �

� Qrÿ1

h�0

�zÿ oÿ h� � G�zÿ o� 1�
G�zÿ oÿ r� 1�

then it follows that
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f�z� � Qm
k�1

F z

����ok

rk

� �
and

f 0�oj � h� � F 0 oj � h

����oj

rj

� � Qm
k�1
k3j

F oj � h

����ok

rk

� �
�3:2�

for 1Y j Ym and 0Y hY rj ÿ 1. Further, we may readily observe that

G�rj�

F 0 oj � h

����oj

rj

� � � �ÿ1�rjÿhÿ1 rj ÿ 1

h

� �
�3:3�

and, if j 3 k,

G�rk�
F oj � h

����ok

rk

� � � G�rk�G�oj ÿ ok � hÿ rk � 1�
G�oj ÿ ok � h� 1� :�3:4�

Let us now suppose that r is a positive integer. Suppressing dependence on the com-
plex numbers o1; . . . ;om, we write

Ri�z; r� � Ri z

���� o1 � � � om

r� 1 � � � r� 1

� �
and

Aij�z; r� � Aij z

���� o1 � � � om

r� 1 � � � r� 1

� �
:

It follows from (3.2), (3.3) and (3.4), then, that

Aij�z; r� � �ÿ1�mr�m�r�dij
Pr�dij

h�0

ai; j;h; r�1ÿ z�h�3:5�

where

ai; j;h; r � �ÿ1�h r� dij

h

� � Qm
k�1
k3j

bj;k;h; r�dik
�3:6�

for

bj;k;h; r � G�r� 1�G�oj ÿ ok � hÿ r�
G�oj ÿ ok � h� 1� :�3:7�

We note at this juncture that there is a slight discrepancy between these and the corre-
sponding formulae in [Ch] (equations (6.1), (6.2) and the ®rst displayed equation on page
359 of that paper).
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Here and henceforth, we will suppose that n is a positive integer with n > m, z < 0 is
real and that

ok � k ÿ 1

n
for 1Y k Ym:�3:8�

To apply Lemma 2.1, we need to deduce upper bounds for jRi�z; r�j, jAij�z; r�j and for
rational numbers Dm;n; r such that the polynomials

Dm;n; rAij�z; r�

have integral, rather than rational, coe½cients. For the ®rst two of these, we derive asymp-
totically sharp estimates, following arguments of Mahler [Ma1] and Chudnovsky [Ch]. For
the third, we again follow [Ch], but require a much more explicit version of the deliber-
ations undertaken there. We treat this problem in Section 4.

Let us ®rst obtain a bound for jRi�z; r�j. Following Mahler [Ma1], we may write

Ri�z; r� �
�z
0

dt1

�t1

0

dt2 � � �
�tmÿ2

0

dtmÿ1Ri�zjt1; . . . ; tmÿ1�

where

Ri�zjt1; . . . ; tmÿ1� �
Qm
h�1

thÿ1 ÿ th

1ÿ thÿ1

� �r�dih Qm
h�2

�1ÿ thÿ1�1=nÿ1:

Here, we have

zY t1 Y t2 Y � � � Y tmÿ1 Y 0�3:9�

and we de®ne t0 � z and tm � 0. It follows that

jRi�z; r�jY jzjmÿ1

�mÿ 1�! max
ti ÿ tiÿ1

1ÿ ti

� �
max

Qm
h�1

th ÿ thÿ1

1ÿ thÿ1

� �r

where the maxima are taken over variables tl �0Y l Ym� satisfying (3.9). Now

max
zYtiÿ1YtiY0

ti ÿ tiÿ1

1ÿ ti

� �
� jzj

and so, arguing as in the proof of Corollary 2.3 of [Ch], we arrive at

Lemma 3.1. Suppose that z is a negative real number and that r; i and m are positive

integers. Then it follows that

jRi�z; r�jY jzjm
�mÿ 1�! j1ÿ �1ÿ z�1=mjmr:
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It appears to be rather less simple to obtain an asymptotically sharp bound for
jAij�z; r�j. We begin by deriving upper bounds for the jbj;k;h; rj de®ned in (3.7). In fact, if
0Y hY r, we claim that jbj;k;h; rj has roughly the same order of magnitude as the binomial

coe½cient
r

h

� �
. To see this, consider

cj;k;h; r � jbj;k;h; rj r

h

� �ÿ1

� G�oj ÿ ok � hÿ r�G�h� 1�G�rÿ h� 1�
G�oj ÿ ok � h� 1�

���� ����:
We wish to maximize cj;k;h; r for ®xed r, 0Y hY r, 1Y j; k Ym, k 3 j. Since

G�z�G�ÿz� � ÿp

z sin�pz� ;

we have

G�oj ÿ ok � hÿ r�
G�oj ÿ ok � h� 1�
���� ���� � G�ok ÿ oj ÿ h�

G�ok ÿ oj � rÿ h� 1�
���� ����

and so cj;k;h; r � ck; j; rÿh; r. It su½ces, then, to assume that oj ÿ ok > 0, say, via (3.8),
oj ÿ ok � a=n with 1Y aYmÿ 1.

Now, if 0Y hY rÿ 1, then

cj;k;h; r

cj;k;h�1; r
� rÿ h

rÿ hÿ a=n

h� 1� a=n

h� 1
> 1

and so

max
0YhYr

cj;k;h; r � cj;k;0; r :� c�a=n; r�:

Since

c�a=n; r� � G�a=nÿ r�G�r� 1�
G�a=n� 1�

���� ����
and the function

f �x� � G�xÿ r�
G�x� 1�
���� ����

is concave up on the interval �0; 1�, it follows that

max
1YaYmÿ1

c�a=n; r� � max
�

c�1=n; r�; cÿ�mÿ 1�=n; r
�	
:

Further, c�a=n; 1� � n2

a�nÿ a� and
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c�a=n; r� 1�
c�a=n; r� � r� 1

r� 1ÿ a=n
< 1� 1

r

� �a=n

;

where the last inequality follows via calculus (since 0 < a=n < 1). We may therefore con-
clude, using induction, that

c�a=n; r�Y n2

a�nÿ a� r
a=n

and so

cj;k;h; r YFm;n; r � max
n2

nÿ 1
r1=n;

n2

�mÿ 1��nÿm� 1� r
�mÿ1�=n

� �
for 0Y hY r. Thus,

jbj;k;h; rjYFm;n; r
r

h

� �
for 0Y hY r. Now, assuming i3 j, the factor for k � i in the product (3.6) can be esti-
mated by

jbj;k;h; r�1jYFm;n; r�1
r� 1

h

� �
< 2�r� 1�Fm;n; r

r

h

� �
:

It follows that

jAij�z; r�jY
Pr

h�0

jai; j;h; rj�1ÿ z�h Y 2�r� 1�Fmÿ1
m;n; r

Pr

h�0

r

h

� �m

�1ÿ z�h

and so, if i3 j,

jAij�z; r�jY 2�r� 1�Fmÿ1
m;n; r

ÿ
1� �1ÿ z�1=m�mr

:

Next suppose that i � j. Then, for 0Y hY r,

jai; j;h; rj � r� 1

h

� � Qm
k�1
k3j

jbj;k;h; rjY �r� 1�Fmÿ1
m;n; r

r

h

� �m

while

jai; j; r�1; rj �
Qm
k�1
k3j

G�r� 1�G�oj ÿ ok � 1�
G�oj ÿ ok � r� 2�

�������
�������:

Since G�x� < 1=x for x A �0; 1� and G�x� is increasing for x A �2;y�, we have
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jai; j; r�1; rj < 1

oj ÿ ok � 1
�� ��mÿ1

Y
n

nÿm� 1

� �mÿ1

:

Thus

jai; j; r�1; rj�1ÿ z�r�1 <
n

nÿm� 1

� �mÿ1

�1ÿ z�ÿ1� �1ÿ z�1=m�mr

and so, since rZ 1 and
n

mÿ 1

� �mÿ1

Z 3, we obtain

Lemma 3.2. Suppose that n > mZ 2 are integers and that z < 0 is real. Then if

Fm;n; r � max
n2

nÿ 1
r1=n;

n2

�mÿ 1��nÿm� 1� r
�mÿ1�=n

� �
;

we may conclude that

jAij�z; r�jY 1�max 1;
1ÿ z

6

� �� �
�r� 1�Fmÿ1

m;n; r

ÿ
1� �1ÿ z�1=m�mr

:

While for the principal application of this paper (i.e. Theorem 1.1), we will always
take the parameter m to be even, it should be noted that, for odd values of m, Lemma 3.2 is
not quite asymptotically sharp. For the sake of completeness, we mention the following
e¨ective (but nonexplicit) result of Chudnovsky (Theorem 2.1 of [Ch]):

Lemma 3.3. Suppose that z is a negative real number and that r; i; j and m are positive
integers with 1Y i; j Ym. Further, for z1; z2 A C, de®ne

jz1 m z2j � maxfjz1 ÿ ez2j: em � 1g:

Then we may conclude that

lim
r!y

1

r
logjAij�z; r�j � m logj1m �1ÿ z�1=mj:

Let Dm;n; r be the smallest positive rational number for which

Dm;n; rAij�z; r� A Z�z�

for 1Y i; j Ym and de®ne (as in [Ch])

Chrm
n � lim sup

r!y

1

r
log Dm;n; r:

Then, taking y � �b=a�1=n, k � mÿ 1 and

Piÿ1; r�x� �
Pm
j�1

ar�1Dm;n; rAij
aÿ b

a
; r

� �
x jÿ1
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for 1Y iYm, we may apply Lemmata 2.1, 3.1 and 3.3 and inequality (3.1) (which implies
that the corresponding matrix �aij� is nonsingular), to conclude

Theorem 3.4 (Chudnovsky; Proposition 6.2 of [Ch]). Let b > a be positive, relatively

prime integers and suppose that n and m are integers with n > mZ 2 and that e > 0. Then
assuming

�
���
b

m
p
ÿ ���

am
p �meChrm

n < 1;

one may conclude that

j�b=a�1=n ÿ p=qj > jqjÿlÿe

for jqjZ q0�a; b; n; e�, where

l � �mÿ 1� 1ÿ log
ÿ� ���

bm
p

m
���
am
p �meChrm

n

�
log
ÿ� ���

bm
p ÿ ���

am
p �meChrm

n

�( )

and q0�a; b; n; e� is e¨ectively computable.

We note that this result may be readily extended to provide irrationality measures of
this form for �a=b�s=n where s is a positive integer, relatively prime to n (as is done in [Ch]).

Careful choice of the parameter m (depending on a; b and n) allows us to derive
strong e¨ective irrationality measures in a quite general setting. For full ¯exiblity of appli-
cation to algebraic numbers in radical extensions of the form a1=n, we need to have m grow
with n. As a particular example, in the simplest case de®ned by (1.3), we have, for given
values of m, the following irrationality measures lm for y � �3=2�1=17:

m lm m lm m lm

2±3 17 6 14.39 9 16.34
4 15.06 7 15.21 10 16.63
5 14.32 8 15.50 11±16 17

We note that, in this situation, Theorem 3.4 fails to improve upon Liouville's Theo-
rem for 2YmY 3 and 11YmY 16.

The remainder of this paper is devoted to bounding the quantity Chrm
n and studying

the Diophantine consequences of such bounds. In [Ch], very little is said regarding this
problem in the cases where m exceeds some ®xed constant, particularly in case m grows as a
function of n. In fact, as mentioned above, for applications it is almost always necessary to
have mg log n or even mg n. While Chudnovsky (Proposition 6.6 of [Ch]) demonstrates
that

Chrm
n Y �mÿ 1� 2n

f�n�
Pn
a�1
�a;n��1

1

a
ÿ 1ÿ log nÿP

pjn

log p

pÿ 1

0B@
1CA;
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whereby

Chrm
n f �mÿ 1� log n

for n prime, the ``truth'' for such n is more likely to be

Chrm
n f �mÿ 1� log�en=m�:

In a future paper [Be4], we will prove such an inequality under the further assumption that
m=n exceeds a small absolute constant, which enables us to substantially sharpen the results
of Evertse [Ev] on the equation axn ÿ byn � c. In the current paper, we merely provide
evidence for this assertion by deriving an explicit version of Theorem 3.4 for prime nY 347.

4. Arithmetic properties of the coe½cients

In this section, we turn our attention to estimating the p-adic valuations of the
(rational) coe½cients of the polynomials Aij�z; r�, in particular deriving an upper bound
upon the quantity Dm;n; r de®ned in the previous section. From now on, we will assume for
simplicity (and, for our applications, without loss of generality) that n is prime. Through-
out, we will denote by �x� the greatest integer not exceeding a real number x and set
fxg � xÿ �x� (so that 0Y fxg < 1). If a is an integer, we de®ne ordp�a� to be the highest
power of a prime p which divides a and, if r � a=b is rational, we take

ordp�a=b� � ordp�a� ÿ ordp�b�:

We will have use of the following lemma of Chudnovsky (Lemma 4.5 of [Ch]):

Lemma 4.1. Suppose that u; v; s and n are integers with u < v and 1Y s < n, and that

p is a prime, not dividing n and satisfying p2 > maxfjnuÿ sj; jnvÿ sjg: Choose k A N such
that kn1 s �mod p� and k Y p. Then

ordp

ÿ�nuÿ s�ÿn�u� 1� ÿ s
� � � � �nvÿ s�� � vÿ k

p

� �
ÿ uÿ 1ÿ k

p

� �
:

Here and henceforth, for positive integers m; n and r, we will de®ne

Wm;n; r � maxf ����������������������
nr� n�m
p

; 2ng

and suppose that p is prime with p > Wm;n; r. Let us de®ne, for ®xed j A f1; 2; . . . ;mg,

Sj � f j ÿ l: 1Y l Ym; l 3 jg:

Choose integers s1; s2; . . . ; smÿ1 A Sj, ordered such that if integers ul and tl are chosen to
satisfy

ul � tl p� sl

n
�4:1�
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with 1Y tl Y nÿ 1, then

1Y t1 < t2 < � � � < tmÿ1 Y nÿ 1:�4:2�

With sl de®ned in this manner, for 1Y l Ymÿ 1, we now let

gj;k;h; r � r!
Qrÿh

v�ÿh

�nvÿ j � k�ÿ1:�4:3�

Applying the preceding lemma under the assumption that 0Y hY r� 1, we have

ordp gj;k;h; r � ÿ
rÿ hÿ uc� j;k�

p

� �
� ÿhÿ 1ÿ uc� j;k�

p

� �
� r

p

� �
;

where 1Yc� j; k�Ymÿ 1 is chosen such that sc� j;k� � j ÿ k. If p divides h� 1� uc� j;k�,
then

ordp gj;k;h; r �
rÿ hÿ uc� j;k�

p

� �
ÿ r

p

� �
ÿ 1

p

while, if p fails to divide h� 1� uc� j;k�,

ordp gj;k;h; r �
rÿ hÿ uc� j;k�

p

� �
� h� uc� j;k�

p

� �
ÿ r

p

� �
ÿ 1:

In both cases, we ®nd that

ordp gj;k;h; r � ÿ1 if
r

p

� �
Z

h� uc� j;k�
p

� �
,

0 otherwise.

8<:�4:4�

Also,

ordp

r

h

� �
� 0 if

r

p

� �
Z

h

p

� �
;

1 otherwise.

8<:�4:5�

Let us de®ne s0 � t0 � u0 � c� j; j� � 0, for 1Y j Ym, set sl�m � sl and tl�m � tl � n
for 0Y l Ymÿ 1, and write

ul�m � �tl � n�p� sl

n
� ul � p:

Further, de®ne intervals

Ik � 1ÿ uk

p
; 1ÿ ukÿ1

p

� �
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for 1Y k Ym. We claim that these intervals are disjoint and cover �0; 1�. To see this, note
that

uk�1 ÿ uk � �tk�1 ÿ tk�p� sk�1 ÿ sk

n

and so (4.2) and jsk�1 ÿ skjYmÿ 1 imply that

uk�1 ÿ uk >
pÿm

n
>

2nÿm

n
> 1;�4:6�

whence

0 � u0 < u1 < � � � < umÿ1 < um � p:�4:7�

The main result of this section is

Proposition 4.2. Let a; n;m and r be positive integers with n > m > aZ 1 and p be a
prime with p > Wm;n; r. If, for some h; i and j with 0Y hY r and 1Y i; j Ym, we have

ordp ai; j;h; r � ÿa, where ai; j;h; r is as de®ned in (3.6), then

r

p

� �
Z min

1YkYm

uk�a ÿ uk ÿ 1

p

� �
:

Conversely, if

r

p

� �
Z min

1YkYm

uk�a ÿ uk

p

� �
;

then there exist h; i and j with 0Y hY r and 1Y i; j Ym for which ordp ai; j;h; r Yÿa.

Proof. Suppose p > Wm;n; r and ordp ai; j;h; r � ÿa for some 1Y aYmÿ 1: For ®xed
j, we have

fsl : 1Y l Ymÿ 1g � f j ÿ l: 1Y l Ym; l 3 jg

where (4.1) and (4.2) are satis®ed. Upon noting that

G�z� 1� � zG�z�

for z3 0;ÿ1;ÿ2; . . . , it follows from (3.6) and (3.7) that

ai; j;h; r �G
r� dij

h

� �
nr�mÿ1��mÿdij

Qm
k�1
k3j

gj;k;h; r�dik
�4:8�

where gj;k;h; r�dik
is as in (4.3). Since p > Wm;n; r Z 2n, p fails to divide n and so (4.4) and

(4.5) imply that

ordp ai; j;h; r � 1ÿNi; j;h;p�4:9�
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where Ni; j;h;p denotes the number of elements in the set

k A N: 1Y k Ym;
r� dik

p

� �
Z

h� uc� j;k�
p

� �� �
:

Suppose now that h is an integer with 0Y hY r� dij and
h

p

� �
A Ik, where 1Y kYm.

Then we claim that

h� uk

p

� �
<

h� uk�1

p

� �
< � � � < h� umÿ1

p

� �
�4:10�

<
h� u0

p

� �
<

h� u1

p

� �
< � � � < h� ukÿ1

p

� �

where ui is as de®ned in (4.1). To see this, note that, since
h

p

� �
< 1ÿ ukÿ1

p
, we have, from

(4.7), that

h

p

� �
� ul

p

� �
< 1

for 0Y l Y kÿ 1. Therefore

h� u0

p

� �
<

h� u1

p

� �
< � � � < h� ukÿ1

p

� �

which implies (4.10) for k � m. On the other hand, if k < m, since
h

p

� �
Z 1ÿ uk

p
, (4.7)

yields

h

p

� �
� ul

p

� �
Z 1ÿ uk

p
� ul

p
Z 1

for kY l < m. It follows, for these values of l, that

h� ul

p

� �
� h

p

� �
� ul

p

� �
ÿ 1

whence

h� uk

p

� �
<

h� uk�1

p

� �
< � � � < h� umÿ1

p

� �
:

Since

h� umÿ1

p

� �
� h

p

� �
� umÿ1

p
ÿ 1 <

h

p

� �
;

we conclude as stated.
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Combining (4.9) and (4.10), we therefore have that ordp ai; j;h; r � ÿa precisely when

h� uk�a

p

� �
Y

r� Xi; j;h;a

p

� �
< max 1;

h� uk�a�1

p

� �� �
;

where

Xi; j;h;a � 1 if c� j; i�1 k� a �mod m�,
0 otherwise.

�

Since
h

p

� �
A Ik implies that

h

p

� �
Z 1ÿ uk

p
;

we therefore have, if ordp ai; j;h; r � ÿa, that

r� Xi; j;h;a

p

� �
Z

h� uk�a

p

� �
� h

p

� �
� uk�a

p
ÿ 1Z

uk�a ÿ uk

p
:

To prove the converse, suppose that k0 is such that

uk0�a ÿ uk0

p
� min

1YkYm

uk�a ÿ uk

p

� �
and that

r

p

� �
Z

uk0�a ÿ uk0

p
:

Let us choose 0Y h0 Y r such that h0 1ÿuk0
�mod p�. We claim that ordp ai; j;h0; r Yÿa.

Indeed,

h0

p

� �
� 1ÿ uk0

p

and so

r

p

� �
Z

h0

p

� �
� uk0�a

p
ÿ 1 � h0 � uk0�a

p

� �
:

Now, from (4.10), since fh0=pg A Ik0
, we have

h0 � uk0

p

� �
< � � � < h0 � uk0ÿ1

p

� �
and thus, applying (4.9) and (4.10), we conclude as desired. r
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Noting that the tk's remain ®xed when p runs through a given residue class modulo n,
we may de®ne

da;a � min
1YkYm

tk�a ÿ tk� �

for p1 a �mod n�, 1Y aY nÿ 1. From the proof of the preceding proposition, if
ordp ai; j;h; r � ÿa, we have

r� Xi; j;h;a

p

� �
Z

uk�a ÿ uk

p
� tk�a ÿ tk

n
� sk�a ÿ sk

pn

and since jsk�a ÿ skj < m and m < n, it follows that

r� Xi; j;h;a

p

� �
>

da;a

n
ÿ 1

p
:

We therefore obtain

Corollary 4.3. Let a; n;m and r be positive integers with n > m > aZ 1. Further, let p

be a prime satisfying p > Wm;n; r and p1 a �mod n� with 1Y aY nÿ 1. If ordp ai; j;h; r � ÿa,
for some 0Y hY r, where ai; j;h; r is as de®ned in (3.6), then it follows that either p divides
�r� 1��r� 2� or

r� 2

p

� �
>

da;a

n
:

Some simplifying observations are in order. Firstly, we note, for ®xed a;m; n; r and
prime p1 a �mod n�, that the integer da;a is in fact independent of the parameter j. To see
this, ®rst extend the de®nition of the sets Sj de®ned earlier to

~Sj � f j ÿ l: 1Y l Ymg � Sj W f0g

and de®ne

Tj;p � ft A Z: tp1ÿs �mod n� for some s A ~Sjg:

Then we may readily show that Tj�1;p is obtained from Tj;p by subtracting p from each of its
elements, where pp1 1 �mod n� and 1Y pY nÿ 1. Since the set of di¨erences tk�a ÿ tkf g
for 1Y k Ym, corresponding to a ®xed j is just the analogous set of di¨erences obtained
from Tj;p upon ordering this set, we conclude as desired.

We may also note that if a1 1ÿa2 �mod n�; then, for ®xed m and n, we have
da1;a � da2;a. This follows immediately upon noticing that Tj; p1

� ÿTj; p2
, for primes

pi 1 ai �mod n�. Together, these observations enable us to compute da;a under the assump-

tion that 1Y aY
nÿ 1

2
and with tk chosen such that tk 1 aÿ1k �mod n� for 1Y tk Y nÿ 1

and 1Y k Ymÿ 1 (with, again, t0 � 0 and tl�m � tl � n for 0Y l Ymÿ 1). By way of
example, for n � 17 and m � 6, the relevant values of da;a are as given in the following
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table:

d1;a d2;a d3;a d4;a d5;a d6;a d7;a d8;a

a � 1 1 1 1 1 1 2 2 2
a � 2 2 2 5 4 4 5 5 4
a � 3 3 8 6 5 7 8 7 6
a � 4 4 9 11 9 10 11 10 8
a � 5 5 10 12 13 13 14 12 10

while for n � 23 and m � 8, we have

d1;a d2;a d3;a d4;a d5;a d6;a d7;a d8;a d9;a d10;a d11;a

a � 1 1 1 1 1 1 1 1 2 2 2 2
a � 2 2 2 2 5 5 4 4 5 5 4 4
a � 3 3 3 8 6 6 5 7 8 7 7 6
a � 4 4 11 9 11 10 8 10 11 10 9 8
a � 5 5 12 10 12 14 11 13 14 12 11 10
a � 6 6 13 16 17 15 15 16 17 15 16 12
a � 7 7 14 17 18 19 19 19 20 18 18 14

Let us next observe that fr=pg > a=b is equivalent, for 0 < a=b < 1, to

r

N � 1
< p <

r

N � a=b

for the nonnegative integer N � �r=p�. It follows, then, that the product of primes p sat-
isfying p > Wm;n; r which divide the denominator of a given ai; j;h; r and fail to divide
�r� 1��r� 2�, up to requisite multiplicities, divides

exp

 Pnÿ1

a�1

Pmÿ1

a�1

PN0

N�0

 
y

r� 2

N � da;a=n
; n; a

� �
ÿ y

r� 2

N � 1
; n; a

� �!!
:�4:11�

Here

y�x; n; a� � P
pYx

p1a �mod n�

log p

and N0 denotes the smallest positive integer such that
r� 2

N0 � 1
<

����������������������
nr� n�m
p

.

Let us now begin the process of explicitly bounding Dm;n; r. From (4.8), it is clear that

Dm;n; r Y �nr�1sn; r�1ÿmD0D1�4:12�
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where sn; r denotes the n-part of r! (i.e. for n prime, sn; r � nordn r!) and, suppressing depen-
dence upon n;m and r, D0D1 is the least common multiple of the denominators of the
coe½cients ai; j;h; r given by (4.8) for 0Y hY r� dij and 1Y i; j Ym, where D0 consists of
those primes p with pYWm;n; r while D1 is comprised of those with p > Wm;n; r. Here, we
assume that the rational coe½cients ai; j;h; r are in reduced form.

Let us ®rst deduce a lower bound upon sn; r. Note that

sn; r � nordn r! � n�rn��� r

n2�����

and so, if r � log r

log n

� �
, we have

log sn; r

log n
�Pr

t�1

r

nt
ÿ r

nt

� �� �
Z
Pr
t�1

r� 1

nt
ÿ r � �r� 1��1ÿ nÿr�

nÿ 1
ÿ r:

Writing r � log r

log n
ÿ g, where 0Y g < 1, and noting that

2ÿ r� 1

r
ng � g�nÿ 1�

nÿ 1
>

1ÿ n

r
nÿ 1

;

this implies that

sn; r Z
rÿ1n

rÿ1
nÿ1 if nY r,

1 if n > r.

�
�4:13�

Let us next deal with D0. Suppose that p divides the denominator of some gj;k;h; r (or,
possibly, gj;k;h; r�1). It follows that we have �p; n� � 1. Since there are at most r=pt� � � 1
terms of the form nl ÿ sk (for ÿhY l Y rÿ h) with ordp�nl ÿ sk�Z t (for t � 1; 2; . . .), we
conclude that the order to which p divides the denominator of gj;k;h; r�dik

is bounded above
by

log�nr� n�m�
log p

� �
� r� dik

p

� �
� r� dik

p2

� �
� � � � :

On the other hand,

ordp

ÿ�r� dik�!
� � r� dik

p

� �
� r� dik

p2

� �
� � � �

and so it follows that

log D0 Y �mÿ 1� P
pYWm; n; r

log�nr� n�m�:�4:14�

Now from Corollary 1 of Rosser and Schoenfeld [RS], we have
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p�x� < 1:25506x

log x
for x > 1

where p�x� denotes the number of primes p with pY x, and soP
pYWm; n; r

log�nr� n�m� < 2:52Wm;n; r:�4:15�

For larger primes (i.e. with p > Wm;n; r), we apply Corollary 4.3. Since, for such
primes, we have

ordp D1 Ymÿ 1;

it follows, from (4.11), (4.12), (4.14) and (4.15), that

Dm;n; r Y
�r� 2��r� 1�e2:52Wm; n; r

nr�1sn; r

� �mÿ1

D2�4:16�

where D2 � D2�m; n; r� satis®es

log D2 �
Pnÿ1

a�1

Pmÿ1

a�1

PN0

N�0

 
y

r� 2

N � da;a=n
; n; a

� �
ÿ y

r� 2

N � 1
; n; a

� �!
:�4:17�

To derive an upper bound upon D2, we note that

PN0

N�0

 
y

r� 2

N � da;a=n
; n; a

� �
ÿ y

r� 2

N � 1
; n; a

� �!

is bounded above by

PN1

N�0

y
r� 2

N � da;a=n
; n; a

� �
ÿ PN1ÿ1

N�0

y
r� 2

N � 1
; n; a

� �
for each positive integer N1 (see e.g. [Ea]). If dn�x� is a positive real-valued function for
which

max
1YaYnÿ1

nÿ 1

x
y�x; n; a� ÿ x

nÿ 1

��� ��� < dn�x�;�4:18�

then we have

log D2 Y
r� 2

nÿ 1

Pnÿ1

a�1

Pmÿ1

a�1

0BBB@ PN1

N�0

1� dn
r� 2

N � da;a=n

� �
N � da;a=n

ÿ PN1ÿ1

N�0

1ÿ dn
r� 2

N � 1

� �
N � 1

1CCCA�4:19�

It remains to derive suitable dn�x� to satisfy (4.18).
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5. Chebyshev-like estimates for primes in arithmetic progressions

The deliberations of Section 4 motivate the need to establish reasonably precise upper
and lower bounds for the function y�x; n; a�. From the theory of the distribution of primes
in arithmetic progressions, we have

y�x; n; a�@ x

f�n�
where f�n� denotes Euler's totient function. For our purposes, however, we require more
than asymptotics. Following the arguments of RamareÂ and Rumely [RR], we combine a
result on zero-free regions for certain Dirichlet L-functions (Theorem 3.6.2 of [RR]) with
explicit computations designed to verify that the zeros of these functions in the critical strip,
with imaginary part bounded by 1000, lie on the half-line (that is, satisfy the Generalized
Riemann Hypothesis to height 1000, or, more succinctly, GRH(1000)).

To carry out these calculations, we employed a number of Turbo Pascal routines
written by Professor Rumely, which he was kind enough to provide to us. Very roughly,
these work as follows. Program ``L'', after computing character values for the L-functions
with a given conductor and root numbers for the associated functional equations, computes
the zeros for these L-functions. This is done by producing Taylor series expansions of the
related partial zeta functions, via Euler-MacLaurin summation. Brent's linear/quadratic
search algorithm is then used to ®nd zeros on the half-line for each L-functions while
Brent's max/min algorithm for ®nding intervening maxima/minima is used in conjunction
with Laguerre's method to identify (possible) roots o¨ the half-line. Programs ``V'' and
``ZCHECK'' are then used to validate the list of zeros produced. For a more detailed
exposition of these algorithms, the reader is directed to the paper of Rumely [Ru]. Our
computations were carried out over the course of a number of weeks on a variety of Sun
Sparc 4 and Sparc 20 machines, running algorithms ``L'', ``V'' and ``ZCHECK'' for all
L-functions associated with Dirichlet characters with prime conductor n between 73 and
347. Explicit data on the zeros encountered, their pair correlation, etc. is available from the
author on request. For the purposes of this paper, however, we need only note the following

Theorem 5.1 (Rumely and Sun). Every L-function associated to a Dirichlet character

with prime conductor n for 73Y nY 347 satis®es GRH�1000�. That is, the nontrivial zeros

of such an L-function with imaginary part bounded in modulus by 1000 have real part 1=2.

We apply this result to give us Chebyshev-type estimates for y�x; n; a� with relatively
large values of x. Let us de®ne

en � max
xZ1011

max
1YaYnÿ1

max
1YyYx

nÿ 1

x
y�y; n; a� ÿ y

nÿ 1

��� ���:�5:1�

To deduce upper bounds upon en for 3Y nY 347, we apply Theorems 4.3.1 and 4.3.2 of
[RR] (to be precise, we modify Theorem 4.3.2 by replacingÿ

1� �1� d�m�1�m
dÿm

with the term A�m; d� from Theorem 4.3.1; the argument leading to Theorem 4.3.2 indi-
cates that this is a valid substitution). In these theorems, we take H � 10000 (for
5Y nY 13), H � 2500 (for 19Y nY 71) and H � 1000 (for 71Y nY 347) (where these
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choices are permissible by Theorem 5.1 above and Theorem 2.1.1 of [RR]). Further, in the
notation of [RR], we take x0 � 1011, m � 9 (for n � 5; 7, 19Y nY 37 or 73Y nY 101),
m � 10 (for n � 11; 13, 41Y nY 71 or 103Y nY 277), m � 11 (for 281Y nY 347)
and 0:0048 < d < 0:0054 (for 73Y nY 347), 0:0018 < d < 0:0021 (for 19Y nY 71) and
0:00046 < d < 0:00049 (for 5Y nY 13), chosen to optimize our bound. If n � 3 or n � 17,
we simply apply Theorem 1 of [RR] with x0 � 1010. We conclude

Theorem 5.2. If 3Y nY 347 is prime and en is as de®ned in (5.1), then en < ~en where
~en is given in the following table:

n ~en n ~en n ~en n ~en

3 0.002238 67 0.018873 151 0.046304 241 0.060570
5 0.002686 71 0.019435 157 0.047254 251 0.062161
7 0.003007 73 0.033698 163 0.048204 257 0.063116
11 0.003606 79 0.034706 167 0.048837 263 0.064073
13 0.003893 83 0.035374 173 0.049787 269 0.065030
17 0.010746 89 0.036369 179 0.050737 271 0.065349
19 0.011296 97 0.037686 181 0.051054 277 0.066307
23 0.011980 101 0.038341 191 0.052637 281 0.066943
29 0.012968 103 0.038664 193 0.052954 283 0.067261
31 0.013290 107 0.039305 197 0.053587 293 0.068851
37 0.014244 109 0.039625 199 0.053904 307 0.071081
41 0.014869 113 0.040265 211 0.055806 311 0.071719
43 0.015176 127 0.042496 223 0.057710 313 0.072038
47 0.015788 131 0.043132 227 0.058345 317 0.072677
53 0.016702 137 0.044084 229 0.058663 331 0.074915
59 0.017613 139 0.044402 233 0.059298 337 0.075876
61 0.017917 149 0.045987 239 0.060252 347 0.077478

We now turn our attention to the problem of bounding y�x; n; a� for smaller values of
x. Let us de®ne

yn � max
1YaYnÿ1

max
0<xY1011

1���
x
p y�x; n; a� ÿ x

nÿ 1

��� ���:
We obtain the values for yn with 2Y nY 397 through sieving. As noted in [RR], the

function
ÿ
y�x; n; a� ÿ x=�nÿ 1��= ���

x
p

is monotone decreasing between jumps at primes.
From this observation, it is a straightforward matter to compute yn, as described in [RR].
To accomplish this, we used code generously provided by Enrico Bombieri, written in C
and implemented on a Sparc Ultra. This code is available from the author on request. The
total amount of computation required to produce the values for yn with n prime between 2
and 400 was approximately 400 hours. In the table that follows, we list values for n and yn

(the latter rounded up in the sixth decimal place), together with the progression for which
this maximum is attained and the corresponding value ~x. This last integer satis®es ~x � pj

(i.e. the jth prime) where either

yn � 1���������
pjÿ1
p y�pjÿ1; n; a� ÿ

pjÿ1

nÿ 1

��� ���
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or

yn � lim
x!pÿ

j

1���
x
p y�x; n; a� ÿ x

nÿ 1

��� ���
as appropriate.

n yn a ~x n yn a ~x

2 2.071993 1 1423 173 0.720103 7 353
3 1.798158 1 69991 179 0.720622 7 1439
5 1.412480 4 349 181 0.720787 7 1093
7 1.116838 4 24470870029 191 0.721560 7 389
11 0.976421 5 726270803 193 0.721705 7 4253
13 1.017317 10 65095932067 197 0.721987 7 401
17 1.001057 8 6395663 199 0.722123 7 1201
19 1.001556 6 461687 211 0.722887 7 2539
23 0.973114 12 793489 223 0.723568 7 2237
29 0.793283 9 2039 227 0.723779 7 461
31 0.853475 8 16773763751 229 0.723881 7 1381
37 0.867916 26 4058619751 233 0.724081 7 1871
41 0.818620 29 30239497 239 0.724369 7 4787
43 0.832936 25 6547405001 241 0.724461 7 971
47 0.744386 34 2000700217 251 0.724902 7 509
53 0.829958 36 5813 257 0.725150 7 521
59 0.710444 58 25841 263 0.725387 7 2111
61 0.719386 1 9212953 269 0.725613 7 1621
67 0.728237 24 48679198759 271 0.725686 7 1091
71 0.750488 11 41333 277 0.725899 7 1669
73 0.759154 72 4817 281 0.726036 7 569
79 0.730952 26 38932253 283 0.726103 7 2837
83 0.703220 7 173 293 0.726425 7 593
89 0.705420 7 541 307 0.726839 7 3691
97 0.713661 79 2206247 311 0.726951 7 1873
101 0.709028 7 613 313 0.727005 7 1259
103 0.709547 7 419 317 0.727113 7 641
107 0.710525 7 863 331 0.727468 7 1993
109 0.710988 7 443 337 0.727611 7 2029
113 0.711863 7 233 347 0.727839 7 701
127 0.714487 7 769 349 0.727883 7 5591
131 0.715133 7 269 353 0.727969 7 4243
137 0.716031 7 281 359 0.728095 7 2161
139 0.716619 121 90124089259 367 0.728257 7 3677
149 0.717609 7 2689 373 0.728373 7 1499
151 0.717847 7 2423 379 0.728486 7 1523
157 0.718525 7 2833 383 0.728559 7 773
163 0.719154 7 659 389 0.728666 7 2341
167 0.719547 7 1009 397 0.728804 7 2389
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6. Endgame computations

We are now in position to obtain explicit upper bounds upon Dm;n; r, where we restrict

attention to primes 17Y nY 347 and take m � n� 1

3

� �
, so that, in all cases, m is even. We

have

Proposition 6.1. If Dm;n; r is as de®ned previously, 17Y nY 347 is prime and

m � n� 1

3

� �
, then

log Dm;n; r < c1�n�r� d�n�

for all rZ 1, while

log Dm;n; r < c2�n�r

for all rZ r0�n�, where the last constant is e¨ectively computable. The constants c1�n�; c2�n�
and d�n� are given in the following table:

n c1�n� c2�n� d�n� n c1�n� c2�n� d�n�
17 8.93 8.21 13.06 167 139.95 104.28 82.87
19 9.40 8.64 15.46 173 146.07 108.37 87.71
23 13.03 11.89 17.66 179 151.40 111.65 83.92
29 17.39 15.78 29.95 181 152.20 112.19 91.69
31 17.92 16.25 30.55 191 163.78 119.73 84.40
37 21.92 19.73 32.51 193 164.81 120.46 91.51
41 25.83 23.13 36.08 197 170.17 123.89 104.53
43 26.62 23.85 33.95 199 170.80 124.24 110.41
47 30.46 27.13 40.16 211 183.12 132.00 124.02
53 34.78 30.78 35.37 223 195.74 139.85 112.93
59 39.18 34.46 48.34 227 201.15 143.15 116.91
61 39.96 35.14 55.93 229 202.11 143.77 100.61
67 44.76 39.16 43.56 233 207.50 147.00 102.49
71 48.36 42.04 54.80 239 213.74 150.70 105.66
73 52.83 42.68 48.11 241 214.95 151.54 95.14
79 58.27 46.87 54.65 251 226.83 158.55 115.64
83 62.70 50.15 49.64 257 233.75 162.75 113.23
89 67.56 53.69 60.29 263 240.15 166.42 119.49
97 73.71 58.30 62.14 269 246.54 170.03 124.75
101 78.29 61.59 50.36 271 247.72 170.79 134.21
103 79.16 62.30 60.85 277 254.62 174.83 119.17
107 83.55 65.38 50.84 281 260.46 178.17 116.79
109 84.18 65.84 58.97 283 261.67 178.95 118.21
113 89.22 69.51 77.93 293 274.23 186.00 129.73
127 100.47 77.36 72.61 307 289.00 194.23 124.89
131 105.34 80.75 71.51 311 294.70 197.29 130.14
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n c1�n� c2�n� d�n� n c1�n� c2�n� d�n�
137 111.44 85.11 79.94 313 296.38 198.48 130.18
139 112.15 85.61 77.27 317 302.73 202.11 134.63
149 122.53 92.62 85.82 331 317.41 209.93 147.69
151 123.41 93.27 89.04 337 324.63 213.85 139.95
157 129.07 97.06 81.61 347 338.02 221.00 133.98
163 134.80 100.86 93.64

Proof. Note that the values for c2�n� follow from direct application of the asymp-
totics for y�x; n; a� to equations (4.16) and (4.17). To prove the stated results for c1�n�, we
consider various ranges for the parameter r. Firstly, for large r, we apply inequalities (4.16)
and (4.19), together with the Chebyshev-type estimates for primes in arithmetic progression
derived in Section 5. In fact, if we suppose that rZ 3� 106, then de®ning

dn�x� �
~en if xZ 1011,
yn�nÿ 1����

x
p if x < 1011,

8<:
where ~en and yn are as in Section 5, we readily obtain the desired bounds from (4.16) and
(4.19), upon choosing 2YN1 Y 16 to optimize (4.19). For smaller values of r, we must
work rather harder. To deal with these cases, we begin by precomputing a table of primes
up to 2� 108, via a sieve, and sorting them into arithmetic progressions. Firstly, if
50000Y r < 3� 106, we apply inequality (4.16) and compute D2 from equation (4.17). To
do this, for each value of N between 0 and N0, we consider the primes in our table between
r� 2

N � 1
and

r� 2

N � 1=n
and sum their logarithms up to multiplicities determined modulo n

(noting that there are at most nÿ 1 relevant subintervals of

r� 2

N � 1
;

r� 2

N � 1=n

� �
to deal with). An important observation is that as we increment r, the term

y
r� 2

N � da;a=n
; n; a

� �
ÿ y

r� 2

N � 1
; n; a

� �
changes by at most the addition of the logarithm of a single prime from our table if there is
a prime p1 a �mod n� in the interval

r� 2

N � da;a=n
;

r� 3

N � da;a=n

� �
and the subtraction of such a prime, if there is one in the interval

r� 2

N � 1
;

r� 3

N � 1

� �
:
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We are thus able to obtain the value of D2 corresponding to r� 1 from that
corresponding to r, without recomputation. Similarly, we may readily compute
D2�m; n; r� d� from D2�m; n; r� for small integral d. Unfortunately, this approach is still too
slow for our purposes as it potentially requires

2N0�mÿ 1��nÿ 1�@ 2m
�����
rn
p

additions and subtractions to obtain D2�m; n; r� 1� from D2�m; n; r�. To speed this up, we
observe that if d A N and s A r; r� 1; . . . ; r� df g, then

log D2�m; n; s�Y log D2�m; n; r� �
Pnÿ1

a�1

Pmÿ1

a�1

PN0

N�0

w�a; a;N; n; r; d�

where

w�a; a;N; n; r; d� � y
r� 2� d

N � da;a=n
; n; a

� �
ÿ y

r� 2

N � da;a=n
; n; a

� �
:

It follows, if we ®nd that

log Dm;n; r <
ÿ
c1�n� ÿ e�n��r

for some e�n� > 0, and also, for some positive integer d, that

S � Pnÿ1

a�1

Pmÿ1

a�1

PN0

N�0

w�a; a;N; n; r; d� < e�n�r� c1�n�d;�6:1�

then we verify Proposition 6.1 for all s A fr; r� 1; . . . ; r� dg.

To implement this observation, let us assume that d > n and write

S � S1 � S2 � S3

where

S1 �
Pnÿ1

a�1

Pmÿ1

a�1

P
d=2YNYN0

w�a; a;N; n; r; d�;

S2 �
Pnÿ1

a�1

Pmÿ1

a�1

P
1YN<d=2

w�a; a;N; n; r; d�

and

S3 �
Pnÿ1

a�1

Pmÿ1

a�1

w�a; a; 0; n; r; d�:

To bound the Si's, we use the trivial estimate

y�B; n; a� ÿ y�A; n; a�Y log B
ÿ
p�B; n; a� ÿ p�A; n; a��
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where p�x; n; a� denotes the number of primes p1 a �mod n� with pY x. If N Z d=2, then,
for ®xed d A N,

d

N � d

n

< 2

and so

Pnÿ1

a�1

 
p

r� 2� d

N � da;a=n
; n; a

� �
ÿ p

r� 2

N � da;a=n
; n; a

� �!
Y 1:

Since there are fewer than n possible values for da;a and since the da;a are strictly increasing
in a, it follows that

S1 Y �nÿ 1� P
d=2YNYN0

log
r� 2� d

N � da;mÿ1=n

� �
:

From the fact that rZ 50000, we have

N YN0 Y
r� 2����������������������

nr� n�m
p Y

r� 2�����������������
n�r� 1�p <

r

2n

and so

r� 2� d

N � da;mÿ1=n
Y

r� 2� d

N � 1=n
<

r� d

N

whence we may conclude that

S1 < �nÿ 1� P
d=2YNYN0

log
r� d

N

� �
:�6:2�

Similarly, we obtain

S2 Y �nÿ 1��mÿ 1� P
1YN<d=2

log
r� d

N

� �
� P

1YN<d=n

d

nN

� �
log

r� d

N

� � !
:�6:3�

To bound S3, we argue somewhat less naively. Recall the following theorem of Brun-
Titschmarsh type, due to Montgomery and Vaughan [MV]:

Theorem 6.2. If x and y are positive real numbers and a and n are relatively prime
integers with 1Y n < yY x, then

p�x� y; n; a� ÿ p�x; n; a� < 2y

f�n� log�y=n� :
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It follows, since we assume d > n, that setting

x�a; a; n; d� � min
2nd

�nÿ 1� da;a log d=da;a

ÿ �" #
;

d

da;a

� �
� 1

( )
;

we have

w�a; a; 0; n; r; d�Y x�a; a; n; d� log
�r� 2� d�n

da;a

� �
whereby

S3 Y
Pnÿ1

a�1

Pmÿ1

a�1

2nd log
ÿ�r� 2� d�n=da;a

�
�nÿ 1� da;a log d=da;a

ÿ � :

By calculus, since d > n > da;a Z 1, we may show that

log
ÿ�r� 2� d�n=da;a

�
da;a log d=da;a

ÿ � Y
log
ÿ�r� 2� d�n�

log�d�

and so, since nZ 17,

S3 Y �nÿ 1��mÿ 1� 17d

8 log d
log
ÿ�r� 2� d�n�:�6:4�

Given r; d; n and m, then, we may thus readily bound S by using (6.2), (6.3) and (6.4)
and appealing to the inequality

�6:5�
P

AYNYB

log
r�d

N

� �
< �BÿA�1� log�r�d�ÿB�log Bÿ1���Aÿ1�ÿlog�Aÿ1�ÿ1

�
:

To illustrate this, let us consider the situation with n � 17;m � 6 and r � 100000 (so
that N0 � 76). We compute D2�6; 17; 105� explicitly and ®nd that

log D2�6; 17; 105� � 2321042:99325 . . .

and so, from (4.13) and (4.16),

log D6;17;105 < 832485:44:

This implies that we may take e � 0:6 and so, choosing d � 50, we ®nd that (6.2), (6.3),
(6.4) and (6.5) yield the inequality

S � S1 � S2 � S3 < 60000
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whence (6.1) is satis®ed. This proves Proposition 6.1 for 105 Y rY 105 � 50. Applying like
arguments for the remaining cases with rZ 50000, we conclude, after lengthy computa-
tions, that

1

r
log Dm;n; r < c1�n�

for these values.

For 1000Y r < 50000, we compute D2 from (4.17) as before, but treat the small
primes p satisfying

pYWm;n; r � maxf ����������������������
nr� n�m
p

; 2ng

more carefully. In fact, we calculate D0 explicitly from the de®nition for these cases. We
®nd, as before, that

1

r
log Dm;n; r < c1�n�

for all m; n under consideration and 1000Y r < 50000.

Finally, for each pair m and n and each positive integer r with 1Y rY 1000, we
explicitly compute

1

r
log Dm;n; r

and verify that it fails to exceed c1�n�, except for a number of small values of r, the largest
of which is r � 41, corresponding to n � 31. In fact, we have

1

r
log Dm;n; r Y c1�n�

for all r > 3 (if 223Y nY 347), r > 6 (if 109Y nY 211), r > 8 (if 79Y nY 107), etc. For
the remaining exceptional cases, we verify that

1

r
log Dm;n; r ÿ c1�n� < 1

r
d�n�:

The maximal values for

1

r
log Dm;n; r ÿ c1�n�

correspond to r � 1 or r � 2 except for those n with 17Y nY 41, n � 47 and 59Y nY 73.
In all cases, the maxima occur for rY 23. The actual tabulated values are available from
the author upon request. This completes the proof of Proposition 6.1.
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These calculations required a total of roughly four thousand hours of computing time
on a collection of Sun Sparc 4, Sparc 20 and Sparc Ultra machines using code written in C.
They have since been checked using Pari GP and, for some of the computations, Maple V.
In no cases did we encounter discrepancies. r

7. The main theorem

We are now in position to prove the main theorem of our paper, namely:

Theorem 7.1. Let b > a be positive, relatively prime integers and suppose that n; c1�n�
and d�n� are as in Proposition 6.1 and m � n� 1

3

� �
. If we have

�
���
b

m
p
ÿ ���

am
p �mec1�n� < 1;

then, if p and q > 0 are integers, we may conclude that

b

a

� �1=n

ÿ p

q

�����
����� > ÿ3:15� 1024�mÿ 1�2nmÿ1ec1�n��d�n��

���
b

m
p
� ���

am
p �m�ÿ1

qÿl

where

l � �mÿ 1� 1ÿ log
ÿ� ���

bm
p � ���

am
p �mec1�n��1=20

�
log
ÿ� ���

bm
p ÿ ���

am
p �mec1�n�

�( )
:

Proof. We take y � �b=a�1=n, k � mÿ 1 and

Piÿ1; r�x� �
Pm
j�1

arDm;n; rAij
aÿ b

a
; r

� �
x jÿ1

for 1Y iYm in Lemma 2.1, so that inequality (3.1) implies the nonsingularity of the
matrix �aij� where

aij � arDm;n; rAij
aÿ b

a
; r

� �
:

Let us note ®rst that, if n � 17, we may assume, without loss of generality, that
1 < b=aY 3=2. To see this suppose that b=a � t > 1, so that

l > 5 1ÿ log
ÿ�t1=6 � 1�6ae8:98

�
log
ÿ�t1=6 ÿ 1�6ae8:93

� !
:

If t > 3=2 and aZ 3, it follows that l > 17 and so Theorem 7.1 is a consequence of Liou-
ville's theorem. If tZ 2 and aZ 1, we reach a like conclusion. Similarly, if n � 19 (so that,
again, m � 6), we may also assume that 1 < b=aY 3=2, since
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l > 5 1ÿ log
ÿ�t1=6 � 1�6ae9:45

�
log
ÿ�t1=6 ÿ 1�6ae9:40

� !

and the pairs of inequalities t > 3=2 and aZ 4; or t > 5=3 and aZ 2; or t > 2 and aZ 1
each imply that l > 19. Carrying out this argument for larger values of n, we may assume
that b=a is bounded above by

3=2 if 17Y nY 23,

2 if 29Y nY 109,

3 if 113Y nY 347.

8<:
Combining Lemma 3.1 and Proposition 6.1, we have

jPi; r�y�jY
bÿ a

a

� �m

�mÿ 1�! ec1�n�r�d�n��b1=m ÿ a1=m�mr

for 0Y iYmÿ 1, and so, after routine calculations, we ®nd that we may always take
d � e17:75 and

Dÿ1 � ec1�n��b1=m ÿ a1=m�m

in Lemma 2.1. From Lemma 3.2 and Proposition 6.1,

arDm;n; rAij
aÿ b

a
; r

� ����� ����Y 2�r� 1�fmÿ1
m;n; re

c1�n�r�d�n��b1=m � a1=m�mr

for all values of i and j and thus we may readily show that

c � 60:38nmÿ1ed�n�

and

C � ec1�n��1=20�b1=m � a1=m�m

are valid choices in Lemma 2.1. Since we assume b=aY 3, we have either

maxfjyj; jp=qjgmÿ2 < 31=3

or that the conclusion of Theorem 7.1 follows directly from Liouville's theorem. Taking

t � n

nÿm� 1

and r0 � 1 in Lemma 2.1 and noting that the inequality in Theorem 7.1 is trivial if

log C

log D
Z

nÿm� 1

mÿ 1
;
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verifying that

60:38� 31=3 � e1=20 n

mÿ 1

n

nÿm� 1
e17:75

� �nÿm�1
mÿ1

is majorized by 3:15� 1024 for the values of m and n under consideration, we conclude as
desired. r

To complement this result, we mention the following theorem of [Be3], which corre-
sponds to the case m � 2 in Theorem 3.4:

Theorem 7.2. For integer n, de®ne the constant c3�n� by

n c3�n� n c3�n� n c3�n� n c3�n� n c3�n�
3 2.03 11 1.67 23 1.53 41 1.45 59 1.40
4 1.62 13 1.65 29 1.51 43 1.43 61 1.39
5 1.84 17 1.58 31 1.51 47 1.44 67 1.38
7 1.76 19 1.56 37 1.46 53 1.40 71 1.36

Suppose that a, b, s and n are positive integers with b > a, 1Y s < n=2, �s; n� � 1 and n

occuring in the above table. De®ne, for c A Z,

k�c; n� �Q
pjn

pmaxfordp�n=c��1=�pÿ1�;0g:

If, further, we have that

�
���
b
p
� ���

a
p �2�nÿ2� > �bÿ a�2�nÿ1� k�bÿ a; n�

c3�n�
� �n

;

then we can conclude that

b

a

� �s=n

ÿ p

q

�����
����� > aÿ1�1010q�ÿl

with

l � 1�
log

k�bÿ a; n�
c3�n� �

���
b
p
� ���

a
p �2

� �
log

c3�n�
�bÿ a�2k�bÿ a; n� �

���
b
p
� ���

a
p �2

 ! :

If one is content with e¨ective rather than explicit bounds, we deduce a result as
above, valid for suitably large p=q, only with c3�n� replaced by eGn , where
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Gn � ÿgÿ 2

f�n�
P

1Yr<n=2
�r;n��1

c
nÿ r

n

� �

for g the Euler-Mascheroni constant, f�n� Euler's totient function and c�z� the derivative
of the logarithm of G�z�. This is equivalent to Theorem 5.3 of [Ch], upon noting that

eGn�Chr2
n � k�bÿ a; n�Q

pjn
pminfordp�bÿa�;ordpn�1=�pÿ1�g

(see [Be1] for a proof ).

8. Continued fraction expansions

From (1.3), to complete the proof of Theorem 1.1, we are led to consider the equation

jaxn ÿ �a� 1�ynj � 1�8:1�

with 2Y aYminf0:3n; 83g and n prime, 17Y nY 347. If �x; y� is a positive solution to
(8.1), then we have �����������

1� 1

a

n

r
ÿ x

y

�����
����� < 1

anyn
�8:2�

so that x=y is an exceptionally good rational approximation to
����������������
1� 1=an

p
. We wish to show

that all such solutions have x=y � 1. We ®rst establish this for relatively small values of x

and y, proving

Proposition 8.1. If a and n are positive integers with nZ 3, then equation (8.1) has no

solution in integers x and y with

1 < maxfjxj; jyjgY 105000:

We note that the upper bound here is quite a bit stronger than what we actually
require to complete the proof of Theorem 1.1; computationally, however, it is not sig-
ni®cantly more di½cult to derive than an upper bound of, say, 10100.

To prove Proposition 8.1, we consider the initial 10500 partial quotients in the con-
tinued fraction expansions to each of the 2954

����������������
1� 1=an

p
, where a and n satisfy (1.3) with n

prime. Note that it is possible to carry out these computations entirely in integer arithmetic,
using the structure of the minimal polynomial fa;n�x� � �a� 1�xn ÿ a (as in, e.g., [LT]).
For all but very small values of n, however, it appears to be much more economical to
compute the decimal expansion of

����������������
1� 1=an

p
to high precision and then simply apply the

Euclidean algorithm. We employ Pari GP for this purpose on a Sun Sparc 4 machine.

From a theorem of Kuzmin (see e.g. [Kh] and [LT]), one has that, for almost all real
numbers y, the probability that the nth partial quotient of y is a positive integer k is given
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by

P�k� � log
�k � 1�2
k�k � 2�

 !
=log 2

or, equivalently, the probability that the nth partial quotient of y is at most k is

Q�k� � 1ÿ
log

k � 2

k � 1

� �
log 2

:

If one adopts the philosophy that such a heuristic should be valid for any ``reasonably
de®ned'' real number, unless one has speci®c knowledge (e.g. about its continued fraction
expansion, boundedness of partial quotients, etc.) to the contrary, we might expect that the
probability of a given irrational of the form

����������������
1� 1=an

p
(with nZ 3) possessing a partial

quotient exceeding 106 among its ®rst 10500 partial quotients should be about 0.015.
De®ning m�a; n� to be the largest partial quotient among the ®rst 10500 of

����������������
1� 1=an

p
,

upon considering the 2954 cases of a and n de®ned by (1.3) with prime n, this leads to an
expectation of 44:4108 . . . cases for which m�a; n� exceeds 106. In fact, we ®nd precisely 44
such situations, detailed in the following table:

a n m�a; n� a n m�a; n� a n m�a; n�
2 37 1777871 20 137 1648510 42 227 3682553
2 347 1836676 21 107 2880067 42 239 2589120
4 257 1815210 21 193 10564244 45 163 2336300
6 73 1151630 22 179 1014469 46 191 18935003
6 113 17850737 22 223 1599154 52 277 7948681
7 71 2942356 23 227 1844526 57 227 2130943
8 227 1747852 23 271 1367976 57 293 1233501
8 281 2521773 28 281 1202167 60 317 2108163
11 127 3877985 30 331 1989372 61 251 1009130
11 131 8905394 36 131 2518701 62 317 2695313
12 97 2398474 38 151 2330107 62 337 2598313
12 337 6345557 39 211 1642509 64 241 1225326
15 293 4181758 39 293 1863042 67 233 1085533
16 293 1251851 40 283 1789726 76 263 1125489
18 271 1330647 41 269 1114732

Further analysis of our data for the 2954 cases in question does nothing to undermine
the belief that continued fraction expansions of these numbers behave as expected.

Now, we observe from (8.2) that a positive solution to (8.1) corresponds to a con-
vergent in the continued fraction expansion to

����������������
1� 1=an

p
. For such a convergent pi=qi, we

have, as an immediate corollary of Theorem 13 of [Kh],
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�����������
1� 1

a

n

r
ÿ pi

qi

�����
����� > 1

�ai�1 � 2�q2
i

where ai�1 is the �i � 1�st partial quotient in the aforementioned continued fraction expan-
sion. It therefore follows from (8.2) that a solution �x; y� to (8.1) (with x=y � pi=qi) induces
a partial quotient ai�1 satisfying

ai�1 Z anqnÿ2
i ÿ 1:�8:3�

This standard folklore argument allows us to reduce the problem of searching for small
solutions to (8.1) to a routine examination of a list of the initial partial quotients in the
continued fraction expansion to

����������������
1� 1=an

p
.

For each of the 2954 pairs �a; n� under consideration, we note that none of the ®rst
®ve convergents pi=qi in the continued fraction expansion to

����������������
1� 1=an

p
yields a solution

to (8.1) other than with pi=qi � 1. Since we always ®nd that q5 Z 254 (where equality is
obtained for �a; n� � �4; 19�), inequality (8.3) implies that we require a partial quotient
exceeding 1037 in order to contradict Theorem 8.1. Since, for each of our 2954 examples,
we ®nd that q10500 exceeds 105000, upon examination of the above table, we conclude as
desired, ®nishing the proof of Proposition 8.1.

We now apply Theorem 7.1 with �a; b; n� as in (1.3). For example, if

�a; b; n� � �2; 3; 17�;

we ®nd from Theorem 7.1 that

3

2

� �1=17

ÿ p

q

�����
����� > �6:3� 1043�ÿ1qÿ16:08

for all p; q > 0. Combining this with (8.2) implies that every solution to

j3x17 ÿ 2y17j � 1

satis®es

maxfjxj; jyjg < 8:78� 1045:

Proposition 8.1 thus yields the desired result. We argue similarly for the other values of
�a; b; n� under consideration, in each case deducing an inequality which permits application
of Proposition 8.1. This completes the proof of Theorem 1.1.

9. Approximation by algebraic numbers

If b is an algebraic number, we will denote by H�b� the maximum modulus of the
coe½cients of the minimal polynomial of b over Q. Further, let q�b� be the smallest posi-
tive integer such that q�b�b is an algebraic integer. We have, as a direct generalization of
Liouville's theorem,
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Lemma 9.1. If y is an algebraic number of degree nZ 3, k A N and a3 y is algebraic

of degree at most k, then

jyÿ ajZ kÿ2�k � 1�1ÿnq�y�ÿkn�1� jyj�1ÿkÿ1�H�y��k�1ÿn�
H�a�ÿn:

Proof. This follows from Satz 3 on page 7 and Hilfssatz 15 on page 74 of Schneider
[Schn]. r

We compare this to the strong, though ine¨ective, result of Schmidt [Schm]:

Theorem 9.2. If y is algebraic, k is a positive integer and e > 0, then there exist at
most ®nitely many algebraic numbers a of degree at most k such that

jyÿ aj < H�a�ÿkÿ1ÿe:

One may show that this theorem is essentially best possible (i.e. the exponent ÿk ÿ 1
cannot in general be replaced by a larger constant). If k � 1, Theorem 9.2 reduces to
Roth's Theorem.

To derive an e¨ective improvement upon Lemma 9.1 that approaches Theorem 9.2 in
strength, in the special case where y � �b=a�1=n, we apply part 2 of Lemma 2.1, together
with the estimates leading to Theorem 3.4. We have

Theorem 9.3. Suppose that a; b; n and m are positive integers with n > mZ 2 and
b > a. Further de®ne jz1 m z2j for z1; z2 A C and Chrm

n as in Section 3, and suppose that

�
���
b

m
p

m
���
am
p �m�mÿ2��

���
b

m
p
ÿ ���

am
p �me�mÿ1�Chrm

n < 1:

It follows, if a is algebraic of degree strictly less than m, that there exists an e¨ectively com-

putable constant c � c�a; b; n;m� such that

j�b=a�1=n ÿ aj > cH�a�ÿwÿ1

where

w � �1ÿm� log
ÿ� ���

bm
p

m
���
am
p �meChrm

n

�
log
ÿ� ���

bm
p

m
���
am
p �m�mÿ2�� ���

bm
p ÿ ���

am
p �me�mÿ1�Chrm

n

� :
Proof. Let us note that the lower bound for j�b=a�1=n ÿ aj is an easy consequence of

Lemma 9.1 if a has degree Z nÿ 1, so that we may in fact extend the above conclusion to
include approximation of �b=a�1=n by algebraic numbers of arbitrary degree. If we suppose
that the minimal polynomial of a over Z is given by

P�z� � Pmÿ1

i�0

xiz
i

where xi A Z, then the combination of part 2 of Lemma 2.1 with the estimates of Section 3
implies that
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Pmÿ1

i�0

xi�b=a� i=n

���� ����gH�a�ÿw

where the implicit e¨ective constant depends at most upon a; b; n and m and w is as above.
Since Hilfssatz 15 of [Schn] yields the inequality

Pmÿ1

i�0

xi�b=a� i=n

���� ����Y �mÿ 1�2ÿ1� �b=a�mÿ2
n
�mÿ2

H�a�j�b=a�1=n ÿ aj;

we conclude as desired. r

10. E¨ective results

Before proceeding with the proofs of our corollaries, we will say a few words about
e¨ective rather than explicit results (though, as previously mentioned, we will, for the most
part, postpone such discussions to a future paper [Be4]). From Proposition 4.2 and the
arguments leading to (4.16) and (4.17), we have

Chrm
n �

2

nÿ 1

Pnÿ1
2

a�1

Pmÿ1

a�1

Py
N�0

1

N � da;a=n
ÿ 1

N � 1

� �
ÿ �mÿ 1�n

nÿ 1
log n:

To simplify this expression, de®ne c�z� to be the derivative of the logarithm of the gamma
function, whereby

PN0

N�0

1

N � a
ÿ 1

N � b

� �
� c�N0 � a� 1� ÿ c�N0 � b� 1� � c�b� ÿ c�a�:

It follows that

Chrm
n �

2

nÿ 1

Pnÿ1
2

a�1

Pmÿ1

a�1

ÿ
c�1� ÿ c�da;a=n��ÿ �mÿ 1�n

nÿ 1
log n

and so, from the fact that

c�1� � ÿg

where g � 0:5772 . . . is the Euler-Mascheroni constant, we have

Chrm
n � ÿ

2

nÿ 1
Um;n ÿ �mÿ 1� g� n log n

nÿ 1

� �
with

Um;n �
Pnÿ1

2

a�1

Pmÿ1

a�1

c�da;a=n�:
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For small values of m, we may achieve quite explicit characterizations of Chrm
n . In

particular, we have (assuming n > m is prime)

U2;n �
P�n=2�

j�1

c
j

n

� �

whence the functional equation

c�z� ÿ c�1ÿ z� � ÿp cot�pz�

in combination with

c�nz� � log�n� � 1

n

Pnÿ1

j�0

c�z� j=n�

(where we take z � 1=n) implies (see e.g. Chudnovsky [Ch]) that

Chr2
n �

p

nÿ 1

P�n=2�

j�1

cot
p j

n
:

Similarly, we have, for prime n > 3,

U3;n �
P�n=3�

j�1

c
j

n

� �
� c

2 j

n

� �� �
� P�n=2�

j��n=3��1

c
nÿ j

n

� �
� c

nÿ 2 j

n

� �� �
:

To see this, note that, arguing as in Section 4, we may assume that
nÿ 1

2
distinct values of a

with 1Y aY nÿ 1 are such that there exist ~a with ~a1 aÿ1 �mod n� and 1Y ~aY
nÿ 1

2
. It

follows, in the notation of that section, that we have

t1 � ~a; t2 � 2~a; t3 � n; t4 � ~a� n; t5 � 2~a� n:

Therefore

da;1 � min�~a; nÿ 2~a�

and

da;2 � min�nÿ ~a; 2~a�

whence

da;1 � ~a if ~aY �n=3�,
nÿ 2~a if ~a > �n=3�

�
and
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da;2 � 2~a if ~aY �n=3�,
nÿ ~a if ~a > �n=3�.

�

The result thus follows from the arguments leading to Corollary 4.3. We also have

U4;n �
P�n=4�

j�1

c
j

n

� �
� c

2 j

n

� �
� c

3 j

n

� �� �

� P�n=3�

j��n=4��1

c
nÿ j

n

� �
� c

nÿ 2 j

n

� �
� c

nÿ 3 j

n

� �� �

� P�2n=5�

j��n=3��1

c
nÿ j

n

� �
� c

j

n

� �
� c

3j ÿ n

n

� �� �

� P�n=2�

j��2n=5��1

c
nÿ j

n

� �
� c

j

n

� �
� c

nÿ 2 j

n

� �� �
;

U5;n �
P�n=5�

j�1

c
j

n

� �
� c

2 j

n

� �
� c

3 j

n

� �
� c

4 j

n

� �� �

� P�n=4�

j��n=5��1

c
nÿ j

n

� �
� c

nÿ 2 j

n

� �
� c

nÿ 3 j

n

� �
� c

nÿ 4 j

n

� �� �

� P�2n=7�

j��n=4��1

c
nÿ j

n

� �
� c

nÿ 2 j

n

� �
� c

j

n

� �
� c

4j ÿ n

n

� �� �

� P�n=3�

j��2n=7��1

c
nÿ j

n

� �
� c

nÿ 2 j

n

� �
� c

j

n

� �
� c

nÿ 3 j

n

� �� �

� P�2n=5�

j��n=3��1

c
2 j

n

� �
� c

4j ÿ n

n

� �
� c

j

n

� �
� c

3j ÿ n

n

� �� �

� P�n=2�

j��2n=5��1

c
2nÿ 3 j

n

� �
� c

nÿ j

n

� �
� c

2nÿ 4 j

n

� �
� c

nÿ 2 j

n

� �� �

and

U6;n �
P�n=6�

j�1

c
j

n

� �
� c

2 j

n

� �
� c

3 j

n

� �
� c

4 j

n

� �
� c

5 j

n

� �� �

� P�n=5�

j��n=6��1

c
nÿ j

n

� �
� c

nÿ 2 j

n

� �
� c

nÿ 3 j

n

� �
� c

nÿ 4 j

n

� �
� c

nÿ 5 j

n

� �� �

� P�2n=9�

j��n=5��1

c
nÿ j

n

� �
� c

nÿ 2 j

n

� �
� c

nÿ 3 j

n

� �
� c

j

n

� �
� c

5j ÿ n

n

� �� �
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� P�n=4�

j��2n=9��1

c
nÿ j

n

� �
� c

nÿ 2 j

n

� �
� c

nÿ 3 j

n

� �
� c

j

n

� �
� c

nÿ 4 j

n

� �� �

� P�2n=7�

j��n=4��1

c
nÿ j

n

� �
� c

2 j

n

� �
� c

5j ÿ n

n

� �
� c

j

n

� �
� c

4j ÿ n

n

� �� �

� P�n=3�

j��2n=7��1

c
nÿ j

n

� �
� c

2 j

n

� �
� c

nÿ 2 j

n

� �
� c

j

n

� �
� c

nÿ 3 j

n

� �� �

� P�3n=8�

j��n=3��1

c
2 j

n

� �
� c

nÿ j

n

� �
� c

j

n

� �
� c

nÿ 2 j

n

� �
� c

3j ÿ n

n

� �� �

� P�2n=5�

j��3n=8��1

c
2 j

n

� �
� c

nÿ j

n

� �
� c

j

n

� �
� c

nÿ 2 j

n

� �
� c

2nÿ 5 j

n

� �� �

� P�3n=7�

j��2n=5��1

c
2nÿ 3 j

n

� �
� c

nÿ j

n

� �
� c

j

n

� �
� c

3j ÿ n

n

� �
� c

5j ÿ 2n

n

� �� �

� P�n=2�

j��3n=7��1

c
2nÿ 3 j

n

� �
� c

nÿ j

n

� �
� c

j

n

� �
� c

2nÿ 4 j

n

� �
� c

nÿ 2 j

n

� �� �
:

From this last expression, we observe that there are two typographical errors in Example
6.5 of [Ch] (i.e. the value Chr6

11).

11. Proof of Corollary 1.2

The proof of Corollary 1.2(a) for mZ 3 is immediate from Theorem 1.1 upon noting
that (1.5) yields, if n � km� 1, the equation

x�xk�m ÿ �xÿ 1�ym � 1:

For m � 2, the result is a consequence of work of Ljunggren [Lj1] who proved that equa-
tion (1.5) with m � 2 possesses only the solutions �3; 11; 5� and �7; 20; 4� in positive integers
�x; y; n� with x > 1; y > 1 and n > 2. Similarly, Corollary 1.2(b) follows from noting that if
x � zm, we have

�zn�m ÿ �zm ÿ 1�ym � 1

and so the equation

X m ÿ �zm ÿ 1�Y m � 1

has the two positive solutions �X ;Y� � �z; 1� and �X ;Y� � �zn; y�, contradicting Theorem
1.1. Combining these two results with the arguments leading to Theorem 3 of [Sh1] and
Theorem 2 of [Sh2] immediately implies Corollary 1.2(d).
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Let us now consider Corollary 1.2(c). We note that it is possible to produce a direct
proof of this result from Theorem 7.1 in conjunction with lower bounds for linear forms in
logarithms of two algebraic numbers, say those due to Laurent, Mignotte and Nesterenko
[LMN]. Instead, we will appeal directly to Theorem 1.1 and the arguments of Saradha and
Shorey [SS] (which also utilize the results of [LMN]). As noted in [SS], there is no loss of
generality in assuming that n and m are odd primes with nZ 5. If there is a solution to (1.5)
with x � z2, then we have

zn ÿ 1

zÿ 1
� Y m;

zn � 1

z� 1
� X m�11:1�

where X and Y are positive, relatively prime integers with X ;Y > 1. It follows immediately
that

�z� 1�xm ÿ �zÿ 1�ym � 2�11:2�

has the two distinct solutions in positive integers given by �x; y� � �1; 1� and

�x; y� � �X ;Y �:

Theorem 1.1 thus implies that z is even. By Theorem 1 of [SS], we may therefore restrict
attention to equation (11.2) with

z A f6; 10; 12; 14; 18; 20; 22; 24; 26; 28; 30g:

We wish to show, for these values of z, that (11.2) has no solutions in positive integers x

and y with xy > 1. To do this, we require a number of lemmata.

Lemma 11.1. If �x; y� is a solution in positive integers to (11.2) with xy > 1, then

yZ
ÿ�zÿ 1�m� 3

�
=2.

Proof. Since we assume that xy > 1, we have that y > x > 0 and so

�z� 1�xm ÿ �zÿ 1��x� 1�m Z 2

whence

2xm ÿ �zÿ 1� Pmÿ1

h�0

m

h

� �
xh Z 2:

The desired conclusion follows upon noting that

yÿ 1Z xZ
ÿ�zÿ 1�m� 1

�
=2: r

Lemma 11.2. If equation (11.2) with z A f6; 10; 12; 14; 18; 20; 22; 24; 26; 28; 30g pos-

sesses a solution �x; y� in positive integers with xy > 1, then mY 587.

Proof. We apply a pair of theorems from a paper of Mignotte [Mi] on the equation
axn ÿ byn � c. These results, in turn, are obtained from the bounds for linear forms in two
logarithms in [LMN].
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Firstly, we use Theorem 2 of [Mi] with (in the notation of that paper)

a � z� 1; b � zÿ 1; c � 2; A � z� 1

and

l � log
 

1� log�z� 1�
log

z� 1

zÿ 1

� �!:
Then we may conclude that if (11.2) has a solution �x; y� in positive integers with xy > 1,
then mY 7521. Next, we apply Theorem 1 of [Mi] where the inequality mY 7521 permits
us to take (again, in the notation of that paper) h � 5l and U � 24:2. If we let z � 6, we
conclude, then, that

�mÿ 432� log yÿ 380 log1=2 yÿ 127 < 0:

If mZ 593, it follows that yY 1164, contradicting Lemma 11.1. Since we may restrict
attention to prime values of m, we therefore have mY 587. For the larger values of z, we
argue similarly, in fact obtaining stronger bounds upon m in all cases. r

Lemma 11.3. Let a be a positive integer with gcd�a;m� � 1. If z � amG 1, then the
equations (11.1) have no solution in integers �x; y; z;m; n� with x; y > 1 and m; n > 2.

Proof. This is immediate from the proof of Lemma 8 of [SS] upon application of
Corollary 1.2(a). r

To conclude the proof of Corollary 1.2(c), we need to deal with the values of m not
excluded by Lemma 11.2 (i.e. mY 587). For a ®xed z and m, let us suppose that equations
(11.1) possess a positive solution. Suppose, further, that we can ®nd a prime p satisfying

(i) p1 1 �mod m�, say p � am� 1,

(ii) if k is the smallest positive integer for which z2k 1 1 �mod p�, then

gcd�k; 6� > 1;

and

(iii) if S1 is the set of residues n modulo pÿ 1 for which

zn ÿ 1

zÿ 1

� �a

1 1 �mod p�

is solvable and S2 is the corresponding set for the congruence

zn � 1

z� 1

� �a

1 1 �mod p�;

then if n A S1 XS2, we have that n1 1 �mod m�.
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We claim that this implies a contradiction. To see this, note ®rst that if �X ;Y ; n� is a
positive solution to (11.1), then p fails to divide XY. If this were not the case, we would
have

z2n 1 1 �mod p�

and so kjn where k is as in (ii). Since gcd�k; 6� > 1, this contradicts the fact that
gcd�n; 6� � 1. It follows that

X pÿ1 � X am 1 1 �mod p� and Y pÿ1 � Y am 1 1 �mod p�

whence

zn ÿ 1

zÿ 1

� �a

1 1 �mod p� and
zn � 1

z� 1

� �a

1 1 �mod p�:

Since, by assumption (iii), we have n1 1 �mod m�, applying Corollary 1.2(a) leads to the
desired contradiction.

While it is by no means clear that, given z and m, we can in fact ®nd a prime p with
properties (i), (ii) and (iii), for all the cases under consideration, this turns out to be a rela-
tively easy matter. For example, if z � 6 and m � 43, if we take p � 1033, we ®nd that
p � 24� 43� 1 and (in the notation of (ii)) k � 86. The 24-th roots of unity modulo 1033
are

G1;G14;G135;G176;G195;G196;G231;G355;G369;G398;G407;G500

and so

S1 � f1; 16; 35; 38 �mod 43�g

and

S2 � f1; 8; 10; 22; 25 �mod 43�g

whereby n1 1 �mod 43�, contradicting Corollary 1.2(a). We provide a complete list of
primes p in the case that z � 6, noting that Lemma 11.2 and Lemma 11.3 allow us to sup-
pose that 11YmY 587, m prime:

m p m p m p m p m p m p

11 67 83 997 179 1433 277 1663 389 9337 499 19961
13 313 89 1069 181 2897 281 3373 397 6353 503 3019
17 103 97 3881 191 2293 283 1699 401 3209 509 4073
19 229 101 809 193 3089 293 1759 409 4909 521 16673
23 277 103 619 197 3547 307 5527 419 17599 523 6277
29 233 107 857 199 3583 311 1867 421 6737 541 9739
31 373 109 2617 211 8863 313 1879 431 3449 547 8753
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m p m p m p m p m p m p

37 223 113 2713 223 2677 317 32969 433 5197 557 4457
41 739 127 3049 227 5449 331 1987 439 13171 563 13513
43 1033 131 787 229 2749 337 5393 443 2659 569 6829
47 283 137 823 233 2797 347 2083 449 14369 571 9137
53 2969 139 1669 239 1913 349 30713 457 16453 577 3463
59 709 149 1193 241 4339 353 14827 461 2767 587 10567
61 367 151 907 251 4519 359 10771 463 5557
67 1609 157 7537 257 1543 367 6607 467 2803
71 569 163 2609 263 1579 373 15667 479 3833
73 877 167 5011 269 2153 379 4549 487 7793
79 1423 173 1039 271 1627 383 4597 491 3929

The situation for z A f10; 12; 14; 18; 20; 22; 24; 26; 28; 30g is similar. Re®ning the argu-
ment leading to Lemma 11.2 together with a result analogous to Lemma 19 of [SS] allows
us to improve the upper and lower bounds upon m for these values of z. In all cases, we can
again ®nd prime p satisfying (i), (ii) and (iii). This completes the proof of Corollary 1.2(c).

12. Concluding remarks

While this manuscript was in preparation, the author learned that Corollaries 1.2(a)
and 1.2(c) have been obtained independently by Mignotte (private communication) and
by Bugeaud, Mignotte, Roy and Shorey [BMRS], respectively, using quite di¨erent tech-
niques. Also, Professor Mignotte informed the author that a more careful application of the
results of [LMN] allows one to substantially reduce the number of cases from those de®ned
by (1.3). In fact, this approach allows one to sharpen the inequalities in (1.3) to aY 8 and
nY 61, obviating the need for many of the extensive computations described in Sections 5
and 6, at least in order to prove Theorem 1.1.

It is also worth noting that while the proof of Theorem 1.1 implicitly relies upon the
theory of linear forms in logarithms of algebraic numbers (through its appeal to Theorem
1.1 of [BdW]), more uniform versions of the estimates obtained in this paper would permit
the removal of this dependence.
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